MA 114 Worksheet \#08*: Sequences

1. (a) Give the precise definition of a sequence.
(b) What does it mean to say that $\lim _{x \rightarrow a} f(x)=L$ when $a=\infty$? Does this differ from $\lim _{n \rightarrow \infty} f(n)=L$? Why or why not?
(c) What does it means for a sequence to converge? Explain your idea, not just the definition in the book.
(d) Sequences can diverge in different ways. Describe two distinct ways that a sequence can diverge.
(e) Give two examples of sequences which converge to 0 and two examples of sequences which converges to a given number $L \neq 0$.
2. Match each sequence with its general term:

$\left\{a_{1}, a_{2}, a_{3}, a_{4}, \ldots\right\}$	General Term

(a) $\left\{\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \ldots\right\} \quad$ (i) $\cos (\pi n)$
(b) $\{-1,1,-1,1, \ldots\} \quad$ (ii) $\frac{n!}{2^{n}}$
(c) $\{1,-1,1,-1, \ldots\} \quad($ iii $)(-1)^{n+1}$
(d) $\left.\left\{\frac{1}{2}, \frac{2}{4}, \frac{6}{8}, \frac{24}{16}, \ldots\right\} \right\rvert\,$ (iv) $\frac{n}{n+1}$
3. Let $a_{n}=\frac{1}{2 n-1}$ for $n=1,2,3, \cdots$. Write out the first three terms of the following sequences.
(a) $b_{n}=a_{n+1}$
(c) $d_{n}=a_{n}^{2}$
(b) $c_{n}=a_{n+3}$
(d) $e_{n}=2 a_{n}-a_{n+1}$
4. Suppose that $\lim _{n \rightarrow \infty} a_{n}=4$ and $\lim _{n \rightarrow \infty} b_{n}=7$. Determine the following:
(a) $\lim _{n \rightarrow \infty}\left(a_{n}+b_{n}\right)$
(c) $\lim _{n \rightarrow \infty} \cos \left(\pi b_{n}\right)$
(b) $\lim _{n \rightarrow \infty} a_{n}^{3}$
(d) $\lim _{n \rightarrow \infty}\left(a_{n}^{2}-2 a_{n} b_{n}\right)$
5. Suppose you know that $\left\{a_{n}\right\}$ is a decreasing sequence with $5 \leq a_{n} \leq 8$ for all a_{n}. Why must this sequence have a limit? What can you say about the value of the limit?

