MA 114 Worksheet #08*: Sequences

- 1. (a) Give the precise definition of a **sequence**.
 - (b) What does it mean to say that $\lim_{x\to a} f(x) = L$ when $a = \infty$? Does this differ from $\lim_{n\to\infty} f(n) = L$? Why or why not?
 - (c) What does it means for a sequence to converge? Explain your idea, not just the definition in the book.
 - (d) Sequences can diverge in different ways. Describe two distinct ways that a sequence can diverge.
 - (e) Give two examples of sequences which converge to 0 and two examples of sequences which converges to a given number $L \neq 0$.
- 2. Match each sequence with its general term: $\{a_1, a_2, a_3, a_4, ...\}$ | General Term

$\begin{array}{c c} (a) & \left\{ \frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \dots \right\} \\ (b) & \left\{ -1, 1, -1, 1, \dots \right\} \\ (c) & \left\{ 1, -1, 1, -1, \dots \right\} \\ (d) & \left\{ \frac{1}{2}, \frac{2}{4}, \frac{6}{8}, \frac{24}{16}, \dots \right\} \end{array} \begin{array}{c} (i) & \cos(\pi n) \\ (ii) & \frac{n!}{2^n} \\ (iii) & (-1)^{n+1} \\ (iv) & \frac{n}{n+1} \end{array}$	$\{a_1, a_2, a_3, a_4, \dots\}$	General Term
	$(a) \left\{ \frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \dots \right\}$ $(b) \left\{ -1, 1, -1, 1, \dots \right\}$ $(c) \left\{ 1, -1, 1, -1, \dots \right\}$ $(d) \left\{ \frac{1}{2}, \frac{2}{4}, \frac{6}{8}, \frac{24}{16}, \dots \right\}$	(i) $\cos(\pi n)$ (ii) $\frac{n!}{2^n}$ (iii) $(-1)^{n+1}$ (iv) $\frac{n}{n+1}$

- 3. Let $a_n = \frac{1}{2n-1}$ for $n = 1, 2, 3, \cdots$. Write out the first three terms of the following sequences.
 - (a) $b_n = a_{n+1}$ (b) $c_n = a_{n+3}$ (c) $d_n = a_n^2$ (d) $e_n = 2a_n - a_{n+1}$
- 4. Suppose that $\lim_{n\to\infty} a_n = 4$ and $\lim_{n\to\infty} b_n = 7$. Determine the following:
 - (a) $\lim_{n \to \infty} (a_n + b_n)$ (b) $\lim_{n \to \infty} a_n^3$ (c) $\lim_{n \to \infty} \cos(\pi b_n)$ (d) $\lim_{n \to \infty} (a_n^2 - 2a_n b_n)$
- 5. Suppose you know that $\{a_n\}$ is a decreasing sequence with $5 \le a_n \le 8$ for all a_n . Why must this sequence have a limit? What can you say about the value of the limit?