MA 114 Worksheet \#05: Numerical Integration

1. (a) Write down the Midpoint rule and illustrate how it works with a sketch.
(b) Write down the Trapezoid rule, illustrate how it works with a sketch, and write down the error bound associated with it.
(c) How large should n be in the Midpoint rule so that you can approximate

$$
\int_{0}^{1} \sin (x) d x
$$

with an error less than 10^{-7} ?
2. Use the Midpoint rule to approximate the value of $\int_{-1}^{1} e^{-x^{2}} d x$ with $n=4$. Draw a sketch to determine if the approximation is an overestimate or an underestimate of the integral.
3. The left, right, Trapezoidal, and Midpoint Rule approximations were used to estimate $\int_{0}^{2} f(x) d x$, where f is the function whose graph is shown. The estimates were 0.7811 , $0.8675,0.8632$, and 0.9540 , and the same number of sub- intervals were used in each case.
(a) Which rule produced which estimate?
(b) Between which two approximations does the true value of $\int_{0}^{2} f(x) d x$ lie?

4. Draw the graph of $f(x)=\sin \left(\frac{1}{2} x^{2}\right)$ in the viewing rectangle $[0,1]$ by $[0,0.5]$ and let $I=\int_{0}^{1} f(x) d x$.
(a) Use the graph to decide whether L_{2}, R_{2}, M_{2}, and T_{2} underestimate or overestimate I.
(b) For any value of n, list the numbers $L_{n}, R_{n}, M_{n}, T_{n}$, and I in increasing order.
(c) Compute L_{5}, R_{5}, M_{5}, and T_{5}. From the graph, which do you think gives the best estimate of I ?
5. The velocity in meters per second for a particle traveling along the axis is given in the table below. Use the Midpoint rule and Trapezoid rule to approximate the total distance the particle traveled from $t=0$ to $t=6$.

t	$v(t)$
0	0.75
1	1.34
2	1.5
3	1.9
4	2.5
5	3.2
6	3.0

Math Excel Worksheet \# 5: Numerical Integration

1. The function f is continuous on the closed interval $[2,14]$ and has values as show in the table below. Using three subintervals, what is the approximation of $\int_{2}^{14} f(x) d x$ using both the Midpoint and Trapezoid rule?

x	2	6	10	14
$f(x)$	12	28	34	30

2. (a) State Simpson's rule for approximating $\int_{a}^{b} f(x) d x$ using $N=4$ intervals of size $\triangle x$.
(b) The identity $\int_{1}^{2} \frac{1}{x} d x=\ln (2)$ gives us a way to compute $\ln (2)$ using Simpson's rule. How many intervals N would be required to use Simpson's rule in order to compute $\ln (2)$ with an error of no more than 5×10^{-5} ? Recall that the error estimate for Simpson's rule applied to $\int_{a}^{b} f(x) d x$ is $\operatorname{Error}\left(S_{N}\right) \leq \frac{K_{4}(b-a)^{5}}{180 N^{4}}$.
