MA 114 Worksheet #20: Arc length and surface area

- 1. (a) Write down the formula for the arc length of a function f(x) over the interval [a, b] including the required conditions on f(x).
 - (b) Write down the formula for the surface area of a solid of revolution generated by rotating a function f(x) over the interval [a, b] around the x-axis. Include the required conditions on f(x).
- 2. Find an integral expression for the arc length of the following curves. Do not evaluate the integrals.
 - (a) $f(x) = \sin(x)$ from x = 0 to x = 2.
 - (b) $f(x) = x^4$ from x = 2 to x = 6.
 - (c) $x^2 + y^2 = 1$
- 3. Find the arc length of the following curves.
 - (a) $f(x) = x^{3/2}$ from x = 100 to x = 101.
 - (b) $f(x) = \ln(\cos(x))$ from x = 0 to $x = \pi/3$.
 - (c) $f(x) = e^x$ from x = 0 to x = 1.
- 4. Set up a function s(t) that gives the arc length of the curve f(x) = 2x + 1 from x = 0 to x = t. Find s(4).
- 5. Compute the surface areas of revolution about the x-axis over the given interval for the following functions.
 - (a) y = x, [0, 4]
 - (b) $y = x^3$, [0, 2]
 - (c) $y = (4 x^{2/3})^{3/2}$, [0, 8]
 - (d) $y = e^{-x}$, [0, 1]
 - (e) $y = \sin x, [0, \pi]$
 - (f) Find the surface area of the torus obtained by rotating the circle $x^2 + (y b)^2 = r^2$ about the x-axis.
 - (g) Show that the surface area of a right circular cone of radius r and height h is $\pi r \sqrt{r^2 + h^2}$.

Hint: Rotate a line y = mx about the x-axis for $0 \le x \le h$, where m is determined by the radius r.

MA 114 Math Excel Worksheet #20: Arc length and surface area

- 1. Set up the integral (but do not compute) that computes the surface area for a revolution about the x-axis over the given interval.
 - (a) $y = (x+1)^2$ on [0,4]
 - (b) $y = e^{-x/3}$ on [0, 1]
 - (c) $y = \sin(\pi x)$ on [0, 1]
- 2. Consider $f(x) = \frac{1}{4}x^2 \frac{1}{2}\ln(x)$ on the interval [1, e].
 - (a) Calculate the arc length of f(x) on [1, e].
 - (b) Calculate the volume of the solid of revolution obtained by rotating f(x) about the x-axis on [1, e].