Trig Identities and Integration Strategies

Pythagorean Identities:

- $\sin ^{2}(x)+\cos ^{2}(x)=1$
- $\tan ^{2}(x)+1=\sec ^{2}(x)$
- $1+\cot ^{2}(x)=\csc ^{2}(x)$

Note: The second two identities can be derived from the first one by dividing through by $\cos ^{2}(x)$ and $\sin ^{2}(x)$, respectively.

Double-Angle Formulas:

- $\sin (2 x)=2 \sin (x) \cos (x)$
- $\cos (2 x)=\cos ^{2}(x)-\sin ^{2}(x)$

Power Reduction Formulas:

- $\sin ^{2}(x)=\frac{1}{2}(1-\cos (2 x))$
- $\cos ^{2}(x)=\frac{1}{2}(1+\cos (2 x))$

Note: These are good for integrating even powers of sin and cos when making a substitution is inconvenient.

Integration Strategies:

- Substitution: Use to integrate composite functions of the form $\int f(g(x)) \cdot g^{\prime}(x) d x$. Make the substitution $u=g(x)$ and $d u=g^{\prime}(x) d x$.
- Integration by Parts: Use to integrate products of functions $\int f(x) \cdot g(x) d x$. Let u be the function you'd like to differentiate (e.g. a polynomial whose degree will decrease or a trig function that's hard to integrate) and $d v$ be the function you'd rather integrate. Then evaluate using the formula $\int u d v=u v-\int v d u$.
- Trig Substitution: Use when you have a function whose structure could be simplified by one of the trig identities above, e.g., $\sqrt{a-b x^{2}}$. Substitute the appropriate trig function for x and be sure to replace $d x$ as well.
- Partial Fractions: Use to integrate fractions whose denominator can be factored. Rewrite as a sum or difference of fractions that are easier to integrate (using long division if the numerator has higher degree than the denominator).

Also:

- Don't forget to change back to the original variable and add C on indefinite integrals!
- Remember to change limits or denote different variable limits and switch variables back on definite integrals!

