Conic Sections Reference Sheet

- Any parabola (opening up or down) can be put into the standard form $(x-p)^{2}=4 a(y-q)$. Then:
- The vertex is at (p, q)
- The the focal length is $|a|$
- The focus and directrix are distance $|a|$ from the vertex (in the y direction)
- The axis is the line through the focus and vertex

Note: you can switch x and y to learn about a parabola opening right or left.

- Any ellipse can be put into the standard form $\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1$. If $a>b$, we have the following:
- The length of the major axis is $2 a$
- The coordinates of the vertices on the major axis are ($h \pm a, k$)
- The length of the minor axis is $2 b$
- The coordinates of the vertices on the minor axis are $(h, k \pm b)$
- The coordinates of the foci are $(h \pm c, k)$, where $c^{2}=a^{2}-b^{2}$

Note: if $a<b$, switch a and b in each statement above.

- Any hyperbola (opening left and right) can be put into the standard form $\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1$. Then:
- The center is at (h, k)
- The vertices are ($h \pm a, k$)
- The foci are $(h \pm c, k)$, where $c^{2}=a^{2}+b^{2}$
- The asymptotes are the lines $y=k \pm \frac{b}{a}(x-h)$

Note: for a hyperbola opening up and down, we switch x and y in the standard form; asymptotes are then $y=k \pm \frac{a}{b}(x-h)$.

