Worksheet # 6: Limit Laws and Continuity

An Interesting Fact: Mathematicians did not use a formal theory of limits between the invention of calculus in the 1660's and the formal definition of a limit in the 1820's. Even after the 1820's, mathematicians and scientists wrote lim without writing $x \to a$ below it. It appears that the widespread use of $\lim_{x\to a}$ was only adopted in the early 1900's after being used in several books, including one by G. H. Hardy titled "A Course of Pure Mathematics."

Remark on Notation: When working through a limit problem, your answers should be a chain of true equalities. Make sure to keep the $\lim_{x\to a}$ operator until the very last step.

1. Given $\lim_{x\to 2} f(x) = 5$ and $\lim_{x\to 2} g(x) = 2$, use limit laws to compute the following limits or explain why we cannot find the limit.

(a)
$$\lim_{x \to 2} f(x)^2 + x \cdot g(x)^2$$

(c)
$$\lim_{x \to 2} \frac{f(x)g(x)}{x}$$

(b)
$$\lim_{x\to 2} \frac{f(x)-5}{g(x)-2}$$

(d)
$$\lim_{x \to 2} (f(x)g(2))$$

2. For each limit, evaluate the limit or or explain why it does not exist. Use the limit rules to justify each step. It is good practice to sketch a graph to check your answers.

(a)
$$\lim_{x \to 2} \frac{x+2}{x^2-4}$$

(c)
$$\lim_{x \to 9} \frac{x - 9}{\sqrt{x} - 3}$$

(b)
$$\lim_{x\to 2} \left(\frac{1}{x-2} - \frac{3}{x^2 - x - 2} \right)$$

(d)
$$\lim_{x \to 0} \frac{(2+x)^3 - 8}{x}$$

- 3. Let $f(x) = 1 + x^2 \sin\left(\frac{1}{x}\right)$ for $x \neq 0$. Consider $\lim_{x \to 0} f(x)$.
 - (a) Find two simpler functions, g and h, that satisfy the hypothesis of the Squeeze Theorem.
 - (b) Determine $\lim_{x\to 0} f(x)$ using the Squeeze Theorem.
 - (c) Use a calculator to produce a graph that illustrates this application of the Squeeze Theorem.
- 4. For each of the following tasks/problems, provide a specific example of a function f(x) that supports your answer.
 - (a) State the definition of continuity.
 - (b) List the three things required to show f is continuous at a.
 - (c) What does it mean for f(x) to be continuous on the interval [a, b]? What does it mean to say only that "f(x) is continuous"?
 - (d) Identify the three possible types of discontinuity of a function at a point. Provide a sketch of each type.
- 5. Show that the following functions are continuous at the given point a using problem 4b.

(a)
$$f(x) = \pi, a = 1$$

(b)
$$f(x) = \frac{x^2 + 3x + 1}{x + 3}$$
, $a = -1$

(c)
$$f(x) = \sqrt{x^2 - 9}$$
, $a = 4$

6. Give the intervals of continuity for the following functions.

(a)
$$f(x) = \frac{x+1}{x^2+4x+3}$$

(b) $f(x) = \frac{x}{x^2+1}$

(b)
$$f(x) = \frac{x}{x^2 + 1}$$

(c)
$$f(x) = \sqrt{2x-3} + x^2$$

(d)
$$f(x) = \begin{cases} x^2 + 1 & \text{if } x \le 0\\ x + 1 & \text{if } 0 < x < 2\\ -(x - 2)^2 & \text{if } x \ge 2 \end{cases}$$

- 7. Let c be a number and consider the function $f(x) = \begin{cases} cx^2 5 & \text{if } x < 1 \\ 10 & \text{if } x = 1 \\ \frac{1}{x} 2c & \text{if } x > 1 \end{cases}$
 - (a) Find all numbers c such that $\lim_{x\to 1} f(x)$ exists.
 - (b) Is there a number c such that f(x) is continuous at x = 1? Justify your answer.
- 8. Find parameters a and b so that the following function is continuous

$$f(x) = \begin{cases} 2x^2 + 3x & \text{if } x \le -4\\ ax + b & \text{if } -4 < x < 3\\ -x^3 + 4x^2 - 5 & \text{if } 3 \le x \end{cases}$$

9. Suppose that

$$f(x) = \begin{cases} \frac{x-6}{|x-6|} & \text{if } x \neq 6, \\ 1 & \text{if } x = 6 \end{cases}$$

Determine the points at which the function f(x) is discontinuous and state the type of discontinuity.

Math Excel Worksheet #6 Supplemental Problems

1. Let β be some fixed number greater than 0. Let ω and ϕ be constants and define a function f(x) by the equation

$$f(x) := \begin{cases} x^2 - 2x + 3 & \text{if } x \le 1\\ \beta \cos(\omega x + \phi) & \text{if } x > 1 \end{cases}$$

Is it possible to find values for ω and ϕ such that f(x) is continuous everywhere? If so, find those values. If not, prove that it is not possible. Does your answer depend on the value of β ?

2. Find all values of c so that the following limits exist. Evaluate the corresponding limits.

(a)
$$\lim_{x \to c} \frac{2x^2 + 5x - 3}{x - c}$$

(b)
$$\lim_{x \to 1} \frac{x^2 - 4x + c}{x + 1}$$

- 3. Let $f(x) = x^2 + 1$.
 - (a) Give the intervals of continuity for f(x).
- (c) Evaluate q(5).
- (b) Find $g(x) = \lim_{h \to 0} \frac{f(x+h) f(x)}{h}$.
- (d) Sketch the graph of f(x). Indicate how g(5) is represented on the graph of f(x).