Worksheet \# 5: Limits: A Numerical and Graphical Approach

1. For each task or question below, provide a specific example of a function $f(x)$ that supports your answer.
(a) In words, briefly describe what " $\lim _{x \rightarrow a} f(x)=L$ " means.
(b) In words, briefly describe what $\lim _{x \rightarrow a} f(x)=\infty$ " means.
(c) Suppose $\lim _{x \rightarrow 1} f(x)=2$. Does this imply $f(1)=2$?
(d) Suppose $f(1)=2$. Does this imply $\lim _{x \rightarrow 1} f(x)=2$?
2. Compute the value of the following functions near the given x-value. Use this information to guess the value of the limit of the function (if it exists) as x approaches the given value.
(a) $f(x)=2^{x-1}+3, x=1$
(c) $f(x)=\sin \left(\frac{\pi}{x}\right), x=0$
(b) $f(x)=\frac{\sin (2 x)}{x}, x=0$
(d) $f(x)=\frac{x^{2}-3 x+2}{x^{2}+x-6}, x=2$
3. Let $f(x)=\left\{\begin{array}{ll}x^{2} & \text { if } x \leq 0 \\ x-1 & \text { if } 0<x \\ -3 & \text { if } x=2\end{array}\right.$ and $x \neq 2$.
(a) Sketch the graph of f.
(b) Compute the following:
i. $\lim _{x \rightarrow 0^{-}} f(x)$
v. $\lim _{x \rightarrow 2^{-}} f(x)$
ii. $\lim _{x \rightarrow 0^{+}} f(x)$
vi. $\lim _{x \rightarrow 2^{+}} f(x)$
iii. $\lim _{x \rightarrow 0} f(x)$
vii. $\lim _{x \rightarrow 2} f(x)$
iv. $f(0)$
viii. $f(2)$
4. In the following, sketch the functions and use the sketch to compute the limit.
(a) $\lim _{x \rightarrow \pi} x$
(c) $\lim _{x \rightarrow a}|x|$
(b) $\lim _{x \rightarrow 3} \pi$
(d) $\lim _{x \rightarrow 3} 2^{x}$
5. Show that $\lim _{h \rightarrow 0} \frac{|h|}{h}$ does not exist by examining one-sided limits. Then sketch the graph of $\frac{|h|}{h}$ to verify your reasoning.
6. Compute the following limits or explain why they fail to exist.
(a) $\lim _{x \rightarrow-3^{+}} \frac{x+2}{x+3}$
(c) $\lim _{x \rightarrow-3} \frac{x+2}{x+3}$
(b) $\lim _{x \rightarrow-3^{-}} \frac{x+2}{x+3}$
(d) $\lim _{x \rightarrow 0^{-}} \frac{1}{x^{3}}$
7. In the theory of relativity, the mass of a particle with velocity v is:

$$
m=\frac{m_{0}}{\sqrt{1-\frac{v^{2}}{c^{2}}}}
$$

where m_{0} is the mass of the particle at rest and c is the speed of light. What happens as $v \rightarrow c^{-}$?

Supplemental Worksheet \# 5: Limits: A Numerical and Graphical Approach

1. Use the graph of $f(x)$ to evaluate the following limits.

(a) $\lim _{x \rightarrow 2^{-}} f(x)$
(b) $\lim _{x \rightarrow 2^{+}} f(x)$
(c) $\lim _{x \rightarrow 2} f(x)$
(e) $\lim _{x \rightarrow 5^{-}} f(x)$
(f) $\lim _{x \rightarrow 5^{+}} f(x)$
(f) $\lim _{x \rightarrow 5} f(x)$
2. Sketch the graph of a function with the given limits.
(a) $\lim _{x \rightarrow 1} f(x)=0, \lim _{x \rightarrow 3^{+}} f(x)=3, \lim _{x \rightarrow-1} f(x)=\infty$
(b) $\lim _{x \rightarrow 2^{-}} f(x)=\infty, \lim _{x \rightarrow 2^{+}} f(x)=-\infty, \lim _{x \rightarrow-1} f(x)=0$
(c) $\lim _{x \rightarrow 0} f(x)=2, \lim _{x \rightarrow 2} f(x)=-1 \neq f(2), \lim _{x \rightarrow 3} f(x)=-1$
