MathExcel Worksheet L:

The Fundamental Theorem of Calculus
FTC Part 1. If f is a continuous function on an interval I containing the real number a, and

$$
F(x)=\int_{a}^{x} f(t) d t
$$

then $F^{\prime}(x)=f(x)$ for every x in I.
That is, F is an antiderivative of f on I.

1. Let $F(x)=\int_{1}^{x} \sqrt{9+t^{2}} d t$. Find the slope of the tangent line to $F(x)$ at $x=4$.
2. Let $g(x)=\int_{2}^{x} \sqrt{t} d t$. Find an equation of the tangent line to $g(x)$ at $x=1$.
3. Differentiate each of the following functions.
(a) $f(x)=\int_{-x}^{x} \sin (\theta) d \theta$
(b) $\varphi(x)=\int_{0}^{\pi} 3 t^{2} d t$
(c) $\psi(x)=\int_{\pi / 2}^{\sin (x)} \sqrt{1-z^{2}} d z$
(d) $\tau(x)=\int_{1}^{\sqrt{x}} t d t$
4. Let $f(x)=\int_{2}^{x} t^{2}-t-2 d t$.
(a) Find $f^{\prime}(x)$ and $f^{\prime \prime}(x)$.
(b) Locate and classify all local extrema of $f(x)$.
(c) Identify the absolute extrema of $f(x)$ on $[-2,4]$.
(d) Find the intervals of concavity of $f(x)$, and identify any inflection points.
5. Use FTC Part 1 to write down an antiderivative of $f(x)=\frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2}$. This is the standard normal curve (or bell curve) from statistics. It is a very important probability distribution that occurs frequently in nature. Since it is impossible to express the antiderivative as anything other than an integral, we denote it as $\operatorname{erf}(x)$, otherwise known as the error function.

FTC Part 2. Let f be a continuous function on $[a, b]$. If F is any antiderivative of f on $[a, b]$, then

$$
\int_{a}^{b} f(x) d x=F(b)-F(a)
$$

Recall that previously, we evaluated this definite integral by taking a limit of a Riemann sum,

$$
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f(a+i \Delta x) \Delta x
$$

where $\Delta x=\frac{b-a}{n}$.
6. Last Monday, we evaluated $\int_{1}^{3} x^{2}+2 x d x$ by evaluating the limit of the Riemann sum

$$
\int_{1}^{3} x^{2}+2 x d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(\left(1+\frac{2 i}{n}\right)^{2}+2\left(1+\frac{2 i}{n}\right)\right) \cdot \frac{2}{n}
$$

Now evaluate this definite integral using FTC Part 2.
7. Sketch a graph to explain why we cannot use FTC Part 2 to evaluate the definite integral $\int_{-1}^{1} \frac{1}{x} d x$.
8. Evaluate each of the following definite integrals.
(a) $\int_{1}^{5} \frac{4-x}{x^{2}} d x$
(b) $\int_{0}^{\pi} \cos (\theta) d \theta$
(c) $\int_{0}^{r} 2 \pi t d t$
(d) $\int_{a}^{a} 4 x^{3}+2 \sqrt{x} d x$
(e) $\int_{0}^{2} 3 e^{5 x} d x$
9. (a) Differentiate $F(x)=x \ln (x)-x$.
(b) Evaluate $\int_{1}^{e} \ln (x) d x$.
10. Sketch a triangle in the coordinate plane, with vertices at $(0,0),(b, 0)$, and $(0, h)$. We can visualize the area of the triangle as the area under the line $f(x)=-\frac{h}{b} x+h$. Use a definite integral to recover the area of the triangle.
11. FTC Part 2 shows us that $\int_{a}^{b} f^{\prime}(x) d x=f(b)-f(a)$. That means we can integrate the derivative f^{\prime} to find the net change in f on $[a, b]$. Use this idea to determine how far a car travels from $t=0$ to $t=5$, if its velocity (in meters per second) during this time frame is given by $v(t)=t^{2}-3 \sqrt{t}$.

