MathExcel Supplemental Worksheet B: Functions, average velocities, and limits

1. Find an expression for a function whose graph consists of a line segment joining the point $(-2,2)$ to $(-1,0)$ together with the top half of the unit circle with center at the origin.
2. Rebecca sets out on a journey. For the first half of the distance, she drives leisurely at 30 miles/ hour and for the second half of the distance, she drives at 60 miles/hour. What is her average speed?
3. Consider an object moving with a position given by the function $f(t)=t^{2}$ and the point $P(1,1)$ on the graph of $f(t)$.
(a) Compute the average velocity of the object between P and each point Q_{i} for i from 1 to 9 :
$Q_{1}=(2, f(2)), Q_{2}=(1.5, f(1.5)), Q_{3}=(1.1, f(1.1)), Q_{4}=(1.01, f(1.01))$,
$Q_{5}=(1.001, f(1.001)), Q_{6}=(0, f(0)), Q_{7}=(0.9, f(0.9)), Q_{8}=(0.99, f(0.99))$, $Q_{9}=(0.999, f(0.999))$
(b) Using the above data, estimate the instantaneous velocity of the object at time $t=1$.
4. Decide whether the following statements are true always/sometimes/never. Justify your answer in each case.
(a) As x approaches 100, the function $f(x)=\frac{1}{x}$ gets closer and closer to 0 , so the limit as x goes to 100 of $f(x)$ is 0 .
(b) $\lim _{x \rightarrow a} f(x)=L$ means that if x_{1} is closer to a than x_{2}, then $f\left(x_{1}\right)$ will be closer to L than $f\left(x_{2}\right)$ is.
(c) Whether of not $\lim _{x \rightarrow a} f(x)=L$ exists, depends on how $f(a)$ is defined.
(d) If $f(x)=\frac{x^{2}-4}{x-2}$ and $g(x)=x+2$, then we can say that f and g are equal.
(e) You are trying to guess $\lim _{x \rightarrow 0} f(x)$. You plug in $x=0.1,0.01,0.001, \ldots$ and get $f(x)=0$ at all those values. In fact, you are told that for all $n=1,2, \ldots$, $f\left(\frac{1}{10^{n}}\right)=0$. Then, we can conclude that $\lim _{x \rightarrow 0} f(x)=0$
5. Consider the following function

$$
f(x)= \begin{cases}x^{2} & x \text { is rational, } x \neq 0 \tag{1}\\ -x^{2} & x \text { is irrational } \\ \text { undefined } & x=0\end{cases}
$$

Determine which of the following statements is true.
(a) There is no a for which $\lim _{x \rightarrow a} f(x)$ exists.
(b) There may be some a for which $\lim _{x \rightarrow a} f(x)$ exists, but it is impossible to say without more information.
(c) $\lim _{x \rightarrow a} f(x)$ exists only if $a=0$.
(d) $\lim _{x \rightarrow a} f(x)$ exists for infinitely many a.
6. Sketch the graph of an example of a function f that satiesfies the given conditions.
(a) $\lim _{x \rightarrow 2^{-}} f(x)=1, \lim _{x \rightarrow 1^{+}} f(x)=1, f(0)=1$
(b) $\lim _{x \rightarrow 0} f(x)=1, \lim _{x \rightarrow 1^{-}} f(x)=0, \lim _{x \rightarrow 1^{+}} f(x)=-1, f(1)=1$
(c) $\lim _{x \rightarrow 3^{-}} f(x)=\infty, \lim _{x \rightarrow 3^{+}} f(x)=-\infty, \lim _{x \rightarrow 2} f(x)=\infty, \lim _{x \rightarrow 4} f(x)=-\infty$
7. Carefully use the limit laws and the fact that $\lim _{x \rightarrow c} x^{n}=c^{n}$ to evaluate the following limits. Show all your work.
(a) $\lim _{t \rightarrow 4} \frac{3 t-14}{t+1}$
(b) $\lim _{z \rightarrow 9} \frac{\sqrt{z}}{z-2}$
(c) $\lim _{y \rightarrow \frac{1}{3}}\left(18 y^{2}-4\right)^{4}$
(d) $\lim _{t \rightarrow 0} \frac{t^{2}+1}{\left(t^{3}+2\right)\left(t^{4}+1\right)}$
8. (Review) A cone shaped drinking cup is made from a circular piece of paper of radius R by cutting out a sector and joining the edges CA and CB. Let r and h denote the base radius and height of the conical cup, respectively. Express the volume of the conical cup as function of h and R.

(Hint: For a right circular cone with base radius r, height h and slant height $l,(l)^{2}=$ $\left.(r)^{2}+(h)^{2}\right)$
9. (Review) The half life of Palladium- $100\left({ }^{100} \mathrm{Pd}\right)$ is 4 days. Suppose you start with an initial sample of 1 gram, then
(a) Find the mass of ${ }^{100} \mathrm{Pd}$ that is left after 16 days.
(b) Let $m(t)$ denote the mass of ${ }^{100} \mathrm{Pd}$ left at t days. Express $m(t)$ as a function of t.
(c) Find the inverse of $m(t)$ and explain its meaning.
(d) When will the mass of ${ }^{100} \mathrm{Pd}$ be reduced to 0.01 grams?
10. (Review) Consider the function $f_{0}(x)=\frac{x}{x+1}$
(a) Compute the following compositions

1. $f_{1}(x)=f_{0} \circ f_{0}$
2. $f_{2}(x)=f_{0} \circ f_{1}$
3. $f_{3}(x)=f_{0} \circ f_{2}$
(b) Do you notice a pattern? Can you guess the expression for the function $f_{n}(x)$ for any $n \geq 0$?
(c) Graph $f_{0}(x), f_{1}(x), f_{2}(x)$ and $f_{3}(x)$ on the same screen and describe the effects of repeated composition.
